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ABSTRACT

50797

A reduced form of the patch conic method has been employed to
determine the initial orbital elements of a particle launched or
ejected from the Moon's surface with any afbitrary starting condi-
tions., The reduction was obtained by considering the selenocentric
velocity asymptotes. Explicit and tractable analytic functions have
been derived for the geocentric and Jacobi energies, angular momentum,
standard orbital elements, and conditiéns for Moon-to-Earth trajec-
tories. fercents of randomly ejected material which initially strike
earth, are in retrograde orbits, or go into heliocentric orbits have
been obtained. The results are compared with results obtained by a

numerical integration program for several different situations.
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INTRODUCTION

The problem of the tlme hlstory of motien in spece'of tragectorles
originating on the Mbon s surface has recelved attention in recent |
years, Thére are ‘three fundamental areas in which the probiem arises
which are cﬁrrently under investigation. The Meon has been considered
by several authors as the origin of tektites (Ref. i); a lunar source
was suggested by Whipple as a possible origin of the dust cloud ebout
the Earth»(Ref. 2); and the space program has given rise fo the prob-
lem of returning manned or unmanned spacecraft from the Moon's surface.

The validity of the idea that there must be some kind of large
chunks of material from.the Moon on Earth, and some amounts of lunar
dust arriving daily on Eerth has been established by studies of crater-
forming processes. Several large crafers on Earth have been shown ﬁo
be generated by meteoritic impact. (Ref. 3). Shoemaker's analysis
(Ref. 4) of the ejecta pattern of the lunar crater Copernicus sué-
ports the hypothesis that it is of impact origin and shows that some
of ﬁhe energy ef impacf is consumed in the formation of secondary
impact craters caused by'ejecravfiom the primary crater which have
acquired large kinetic energies. It is plausible to assume thaf some
fragments acqulred kinetic energy 1n excess of the Nbon s gravita-
tional potentlal energy. Further, Gault et al's experlmental studles
(Ref. 5) indicate that bombardments by smaller meteors may cause a
small fractlon of the egected materlal to acqulre escape velocity from
the Moon. Therefore it is of 1nterest to determine the likelihood of
this material arriving on Earth, and the general behavior of all

material ejected into space.



The usual method of investigating Moon-to-Earth trajectories is
to employ the patch-conlc method to establish preliminary orbits, and
then, if precise results are requlred to refine the orbits by
utilizing numerical 1ntegration ‘methods. The patch-conic method, which
was apparently originated by Tisserand and first applied to problems
involving space travel to the Moon by Egorov (Ref. 6), considers the

particle to be in & Keplerian orbit about the body exerting the major

force on-the particle.

The sphere of influence‘ is the surface about & planet or moon
within ﬁhich that body exerts a stronger force than-tne pertnrbative
force of any other body on the particle The surface is nearly a
sphere with radius given by r = R (ﬁ) where m/M < 1 and R is the
distance between m and M. For m = mass of the Moon and M = mass of the
Earth, T ~ 66,000 km. Similarly, a sphere of radius 1 million km
around the earth describes the region.in which the earth's gravita-
tional field predominates over that of the Sun. |

In the case of Moon-to-Earth trajectories, the patch-conic method
considers that the particle is in seienocentric Keplerian hyperbola
from the Moon's surface to the edge of‘the sphere of influence, Then h
the position end velocity coordinates with respect to the Moon are
converted into geocentric position and velocity coordinates taking
into account the position and velocity coordinates of the Moon
relative to the earth. The Earth's gravitationai field is then con- | .
sidered to be the sole determinant of the consequent motion,

The purpose of this paper is to establish the nature of the initial
geocentric orbits of particles learing the Moon's surface with arbitrary

initial conditions. In order to accomplish this, a limiting form of
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the patch-éonic method is developed into analytic forms describing
the geocentric motion of any particle leaving the Moon's surface.

The forﬁulas establish the approximate iniﬁial 6rbital elements;‘more
accurate work or consideration of motion ovér a long duration requires
numerical integration procedures involving éll of the relevant
perturbafions. However, the approximate formulas provide physical
insight, preliminary Moon-to-Earth trajectories, the average'percentage
of material ejected from the Moon that arrives on Barth within s few
days, the distribution of retrograde versus direct geocentric orbits
and the percentage of material with geocentric kinetic energies?iﬁ
excess of the energy stored in the gravitational fields of the Earth-

Moen system.



FORMULAS
A.  CONCEPTS
The object of this paper ié to perform a sﬁrvey of the important

characteristics of the ﬁotion of bodies leaving the éurface of the

Moon aftér ﬁn iﬁifiéi, ihétantaneoﬁs thfuét.“The discussion will
center pafticularly around the’pfoblem §f dus£ ejected by.ﬁeteoritié
bombardment of the Moon's:surface. hThere'are a wide variety of initial
cbnditiohs'which may be imbartéd to:pafﬁicleé ejected from the Moon 4
during crater formation. Cfaférs are dbéerved to cover the surface
of the Moon in éﬁ irrégﬁlar.maﬁﬁer; Eaéh individusl crater sprays
out matérial at a.wide range of ahgles and velocities,

There are six coordinates necessary to describe the initial con-
ditions of the particle at ejection from the Moon, The position coor-
dinates may be given by the radial distance from the Moon's center,
lunar latitude and longitude; the velocity coordinates are given by
the speed, the szimuth direction and the elevation angle. Of these
coordinates, only the radial distance from the Moon's center may
reasonably be taken to be a constant, equal to the radius of the Moon.
There remsin five variables to be studied for an indefinite number of
craters. By using some reasonable assumptions, it will be showmn
that the major features of resulting geocentric conditions can be
obtained with only three explicit variables, -

The first simplification is to consider that material is ejected o
from the Moon uniformly on a surface of a fictitious sphere surrounding
the Moon. The trajectories arising from any particular crater will
not be considered. Instead, it will be assumed that, on the average,
the location of points where the ejecta pierce the sphere is randomly

distributed.
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If the fictitious sphere is at a large enough distance from the
Moon so that the motion is near the asymptotic state of hyperbolic
trajectorieé, the velocity vectors will not bé randomly orienfed in
space., The vectors will be clustered around a trajectory where the
velocity and poéiﬁion are aligned in the radial direction éway,from

the Moon, that is, the trajectories on the average appear as spokes

centered around the Moon (Fig.l). This assumption permits the velo-

city vector to be defined with the same angular coordinates as the

position vector, reducing the number of variables from five to three.

The three variables which play an important part in the analysis
are v, 6, ¢. The magnitude of the residual velocity ;; is defined

to be

2 2 2
V. =Vg -V
T esc
5 2eM
where vg is the ejection velocity Vese = is the classical
m

two body velocity of escape from the Moon's surface. The residual
velocity ;; makes an angle © with the velocity vector of the Moon

;;. The angle 6 is taken to be 0° when V.. is in the direction of the
Moon's motion and 180° when opposite to the Moon's motion. In spheri-
cal coordinate terminology © is the "polar angle", aitﬁough the Moon's
physical pole is perpendicular to the polelof this velocity

coordinate system. The angle o spécifies the azimuthal component of
;; measured in s cone formed by 8 = constant. The plane of the Moon's
orbit around the earth is used for © to establish the value 9 = 0. In
this approximation, no distinction will be made between the earthward
side and back side, or between the norfhern and southern hemispheres;

therefore 0° s ¢ € 90°. (There is an important difference between the

)

(1)



forward and backward velocity hemispheres which is accounted for by
taking © to be between 0° and 180°.)

The components of the ppsition and velocity vectors are to be
obtained with respect to an "inertial" Earth-centered coordinate
system as a function of A 8, 9. First the components are expressed
relative.to a Moon-centered system rotating around the Earth (Fig. 2).
Choosing ﬁ to be in the direction of the Moon's angular momentum
vector with respect to the Earth, { to be pointing to the Earth, 3
to be in the direction of the Moon's antapex, that is, opposite to
the Moon's velocity vector, and remembering that the pole of the 6, ¢
coordinete system is in the -3 direction, the residual velocity vector

;; may be written
v, = T v, sinBcosg - 3 v, cos + E v, sin®sing

The position vector with respect to the Moon is assumed to beivector
of zero amplitude because of the paradoxical-sounding assumption that
the particle is an infinite distance from the Moon but at lunar dis-
tance from the Earth,  In order to obtein coordinates with respect
to the Earth-centered inertial system, the axes are translated to
the Earth, meinteining the orientation of the axes so that there is

now an instantaneous geocentric position vector

r=-1 Rm

In the inertial coordinate system, the Moon is moving at an instan-

teneous rate described by

ey
Vm=-3vm

(2)



. The vector addition of the particle's velocity with respect to the

' Moon and the Moon's velocity with respect to the Earth

B T ~>
v, =V -+ V
g - m

T =8 R 2 '
. Vg =i, sinBcose - J,(vrcose + Vﬁ)
+ K V.. sin®sing
The foregoing conditions may‘be viewed as describing a fictitious
physical situation in which the Moon has "vanished", removing from the
particle all of the potential which is due to.the luﬁér graviational
field. This is a reduced form of the pétch conic technique. The
more general fofm of the batch conic analysis could be established by"
o o
~restoring terms involving RLﬁ e, o.
The definition of Vf‘(Eq.'l) provides a lower limit on Vo in order
to have particles orbiting in Earth-Moon space.
Vo 2 Vese = 2.57
O &'_ .
o This minimum value of vp will be used herein; however, it may be

: poiﬁted out that the use of veéc defined from two body considerations
is somewhat misleadiﬁg.‘ Particles with ejection velocities much less

then v___ will describe vallistic trajectories which strike the Moon
after a brief flight. As vg increases,'the,particlés will describe

incomplete Keplerian ellipses. As these‘ellipses become larger and

provides the geocentric particle velocity ;é as a function of Vs 6, 9

(5)

(6)

(7)



more elongated; they will be increasingly éubjec£ to Earth perturbations.
In some cases, periiune may be raised enough to permit the particle
to become a temporary lunar satellite, When v, becomes large enough
to satisfy the condition

2 2 ‘GMm

Vo 2 Vego = 2 ﬁ;_
the particle has sufficient energy to cross the Moon's sphere of
influence of radius RL’ and may do so, depending ubon the value of
the angular momentum. Between.this value of vy, and the minimum
value of vy obtained above, there is a "fuzzy" region where it can't'
be definitely gsaid whether the barticles "escape' the Moon's sphere
of influence or not. Furthermore, above vo = 2.37, the particleé
cannot be said to."escape" the Moon in the two body sense that they
can never return to the Moon. The term "escape velocity" will be

2 GMh
used to mean that vg = ——

R




The majér effect of the MponJonﬂthe‘initialntrajectories has been
accounted for by removing the gravitaﬁional_potential andAthe Moon's
geocentric velocity from the initial cqnditions of the pérticle. The
remaining geocentric coordinates of the particle will be operated on
with two-body (particle and earth)_formulas ﬁo establish fhe basic
types of initial trajectories. The most important single parameter
of an orbit is the énergy, so that‘calculation will be presented first.

The law of conservation of energy provides the two-body formula

E = %,

2 o, A
N

where E is a constant and the subscripts refer to sets of coordinates.
Obtaining from (6)

2 2 2 ) =)
Vi =V. =V _+ 2V.V cos8 + v
g r rm m

and rq = Rm, the value of E can be obtained

. o . GM
E = %VZ + V.V cosB + A = =2
v “'r rm “'m R

In the two body model, the particle is said to have escaped when

E=>0. If E <0, the particle will trace a Keplerian ellipse or circle
GM ' '

Substituting»vi = ﬁ—s » the condition E > 0 can be stated as
m

2 2
V.V cos@ -v 20
Vp * 2 rm ® m

(9)

(10)

(11)

(12)




If cos © = +1, this condition requires that v, 2 (/2 - 1) v, for the
particle to escape, or, if cosr; -1, then v 2 (/2.+ 1) v for the
particlé to escape. Therefore if vr < .4 Ve 1O particles will

escape, if .hvh <v, < 2.& v » the particle will escape if the

direction of v, is sufficiently close to the Moonis direction of mo-
tion; if v > 2.k v,» 8l particles will escape. The term "escape"

is used here to mean that the parficle has sufficient kinetic energy

to overcome the Earth's gravitational potentisl and recede to "infinity"

during the initial orbit.

The variation of geoéentricrenergy for a given value of ejection
velocity, depending on the value of 0, may seem to be a violation of
the conservation of energy. Indeed, it is shown below that the absolute
or Jacobi energy depends only on the election wvelocity. Howe&er, the
immediate geocentric energy depends upon the vector addition of the
residual velocity vector with the Moon's velocity vector. This is
illustrated schematically in Fig. 3.

A more realistic escape condition may be derived by considering
the system of Earth, particle and Sun. If the particle crosses the
earth's sphere of influence (~10%® xm), the particle will be in es-
sentially heliocentric orbit with a theoretical possibility of re-
turning to the Earth-Moon"system at some later time. The energy re-
quired to leave the Earth-Moon system is somewhat less than to es-
cape to infinity (Eq. 11)

E= éwi + Vv, cos@ + iwi - ;yé + ;EE (13)
» m
The values of escape to infinity given in Eq. 11 or from the

Earth-Moon system given in Eq. 13 do not provide information as

10
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* to the possibility of ultimately escaping the Earth-Moon system. The

1 use of the Jacobi integral of energy obtained from the restricted
three-body theory applied to a system assumed to consist of the Earth,
Moon and particle provides more insight. ~ Expressed in the non-rotating
coordinates system, and assuming the barycenter to be located at the

Earth's center of mass, the Jacobi integral is

5 . . GMe GMm
%v-n'(xy-yx)=r— +to— = C (14)
e m
v
where n' = ﬁg s T and r, are the distance of the particle to the
m

Earth and Moon, respectively, and C is the constant of integration.

| Under the previous assumptions discussed earlier in this paper, the
GM

particle is far enough from the Moon so that ;—E = 0 while remaining
m

at nearly the same distance from the Moon as the Earth so that

’ 2 2
r =R . Then v =vVv_is given in Eq. (10) and x = -R , so the
e m g m

expression for the Jacobi constant reduces to

-
ol

2 2 e . \
v.-&gv = g--C (15)

A consistent calculation is obtained by considering the Jacobi

¥ T integral in the rotating system of coordinates:
‘ GM :
2 2 2 e .
i - ' = m— - .
=) Vr % n Rm Rm C (16)

which obtains again Eq. 15.
Comparing the Jacobi constant with the expression for the two-

11



Since E is not expected to be a true constant of motion, while C is,
the changeélin E must be contained in the term VoV cosf. Whiie it

is not withinrthe scope of the present paper to discuss the long-term
behavior of the particles, a situation may be imagined in order to
¢larify the meaning of Eq. 17. Consider a particle which initially
has E < 0 but v, > (V2 - 1)vm. If at some later time the particle
passes through the Moon's sphere of influence and the Earth's gravita-
tion has a negligible effect on the particle during this bassage,
then, by the laws of two-body mechenics, the residusl velocity_magni-
tude after passage must equal the residual velocity magnitude before
passage. However, the particle's trajectory will bend around the Moon,
the amount of bending depending on the closeness of the encounter with
the Moon. Therefore the value of cos © will change, the value of E
may fluctuate within a range of 2 VoV hence & particle which
originally has a value of E < 0 may acquire enough additional energy
by a passage through the Moon's sphere of influence to bring E above
zero, That is, a particle tracing perturbed Keplerian ellipses may
become hyperbolic with respect to the Earth-Moon system by this
mechanism. So E may be said to define the limits of a particle's
motion during the early phases of its history, while C provides

information on the ultimate limits.

12




C.  ANGULAR MOMENTUM
The geocentric angular momentum is a useful quantity to obtain,
especially in order to evaluate the probability of a particle coming
directly to earth. The angular mdmentum (for a particle of unit mass)
is
A=R x>;é =3 R Vv, sing sing + k R (Vfcose + vm) (18)
The condition necessary to establish a trajectory which intersects
the center of the earth is that there is zero angular momentum., This

condition is met when the 3 and K components above are set equal to

Zero:

®=0° 1 (19)

-v_ cos® = v J
T m

The orbit of a particle with those initial conditions will be a straight
line traveling toward or away from the earth lying in the plane of the

Moon's orbit., For a retrograde orbit, the K-component must be negative,

that is v. cos® + v. <O,
r m

The square of the magnitude may be obtained from Eq. 18

2 _ 2 L2200 .2 2 2
A2 = |R x vg\ =R [v&(l sin” 8 cos o) + 2v_v_cosé + vm] (20)

This function, although dependent on the three variables Vo 8, o, is
still tractable enough to be used for analytic investigations. For any

value of ¢, the condition for minimum angular momentum may be found by

‘ 2
differentiating A with respect to 6,

2

2 2
}E a(a™) = -2vr cos 8 - 2v v sin®
.Rm de T

2 2 (21)
+2vr 5inB cos® sin o

13



Setting this derivative equal to zero provides the value of © vwhere
2 )
A" (or A) ig a minimum for fixed values of A p:
-V
m

= (22)
cos ¢

v_cos® =
r S

If ¢ = 0, the formula (20) is obtained. The two equations ¢ = 0
and v, cos 8 = Vo provide the minimum of the function
A(vr, e, ®) = 0.

The magnitude of the angular momentum vector can be used to pro-
vidé the initial conditions of trajectories which intersect the Earth.
The maximum value of angular momentum AE a particle can have and be

able to strike the Earth is given by

‘ﬁi X ;;‘maximum = R, v, sin 90° = Ap | (23)

where Re is the radius of the Earth, and \A is the velocity of the
particle at the Earth's surface. The magnitude of v, can be computed

from the conservation of energy:

2 2 11
Ve = Vg = 2GM,_ (EE - ﬁ;). (2k)
Setting 2GM (%E - %ﬁ) = vi = 122.9 kmz/sec2 and using vs(vr,e,¢) (25)
we obtain
2
A% = R; v, + 2v v cos® + vi + vz] (26)

1
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2 2
Comparing A, with A (Eq. 20), the values of © which establish an orbit

which Jjust grazes the Earth's surface are expressed as a function of

V. and «o:
2 2 2.2 2 2 2 2 2
-vm(l-a ) vA%Jl-a ) + cos o [agvi- (1-07) (vr + vm) + vrcoszw]
cosb = s + - >
v,.COS @ v cos” @ (27)
2
2 RE ~4 . . -

where a = RZ = 2.75 X 10 ® is smell so the first term is roughly

=]

equal to the condition (22) for minimum angular momentum; .Calling the'
first term of cos® f, and the second term f, it may be said that those

trajectories that have values of 6 such that

O + £ >2cos8 =2 £° - F . _ (28)

will strike the earth during the initial orbit., Incidentally, cos® is
necessarily negative in this region. This region is enclosed between
the dotted lines in'Fig.fhifOf,the case when @ = 0. As w'increaées
from zefo, the dotfed iines move closer together until finally the
region vanishes altogether. The maximum value of ¢ which will permit

and Earth-strike is

1
cosqy__ =[}b + éibz-hac] (29)
where
a = Vi _ ’ : (293)
b= a?vi - (vi + v;) (1-0°) (29b)
c = vi (l-a?)z (29¢c)

Equation (29) is obtained by setting the radical in (27) = 0.

15



There is a discontinuity in Eq. (27) at ¢ = /2, of the order

2 3
of (T/2) . An alternate form of cos® may be used when ¢

= T/2
2 2 22
v+ Vh -V
cosf = -
2vrv
2
o 2
taking z = Q.
l-ov

This equation is only needed when, as computed from (30), |cose| <1
or, solving for the roots of the equality,
vh -« va < Vo < Vi +tov, .

This is the region of v, on Fig. 4 where the first dotted line has

appeared and the second has not.

(30)

(31)

il 4
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D.  ORBITAL ELEMENTS

The geocentric orbital elemgnts a, e, i, w, Q, v are provided
below as a function of the éoordinateé Qr,be, m; Although the semi-
major axis a and the eccentricity are more complicated functions
than those for the equivalent constants of fenergy"‘and "angular
momentum" described in the previous two seétions, they are provided
for completeness. The inclination i establishes the conditions
which cause‘retfograde gebceﬁtric orbifs. The righf ascension of the
ascending node Q is constant within the‘éccuracy of this analysis, a
surprising result which is verified by numerical integration. The
argument of perigee w is the negative of the true anomaly v as a
consequence of the assumptions in this analysis.

Using equations (3) and () which provide r and ;é iﬁ terms of.

V.., 8, o, the usual formilas converting cartesian position and

r’
velocity vectors into orbital elements (Ref. 7) may be applied. The
reduction GM = vi Rm is used throughout this'section. The semimajor

axls, given by

_ GM
a=——"3%
2GM - rv
g
becomes
2
Ym
a= - Rm =

2
V., +2v.Vv_cosb - Vv
rm m

b

The eccentricity, which is

N
ol

e=[1- l%%%;]a

17
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(33)
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4 3

r 2 2 Ve T2
e = { —z (1-sin"@ cos ¢) + 2 = cos@ (2 - sin"® cosZg)
A A : v
m m
(35)
2
Vr 2 2 2
+ = (hcos 6 + sin 8 cos w)}
m —
The angular elements i and Q are obtained from the direction components =
of the unit angular momentum vector T
Rxv |
h = ‘T—é— (%)
Rxv
A
From Reference 7, the expressions
ﬁx = sin Q sin i
-ﬁy =cos Qsin 1 (37)
ﬁz = cos 1 ‘
may be used to obtain the form
: )
2 % -
(b~ +1h %) |
ten 1 = £ —h—-L (38)
z
which provides a simple expression for the inclination as a function ' o
of v, 6, @ i
v, 8in 6 8in ¢ .
tan 1 = : (39)
v, cos 8 + Vin .

If only the positive value of the square root is taeken, the denomina-

tor provides the sign of the fraction., If Ve cos § + v <0, the
m

18




orbit is retrograde as indicated previously in Eq, 18.

The right ascension of the ascending node ( given by

h
ten Q= - = (40)
¥
- is zero for all values of Vs 8, o since the i component of angular

momentum is zero, This feature is a consequence of the coordinate
system. Physically speaking the node lies along the Earth-Moon line,
or the x-axis of the system. If some other reference point in the
Earth-Moon system is used to define the zero position of the node, then
the node will be a non-zero constant.

The true anomaly is obtained from

IR X ;IVR

tan Vv = A5 %- (41)
|R x v]~ -cMr
where
1
2
s = v_ sin® cos {v?'(l-sinze cosTg) + 2v.v cose-+v?} (42)
T r ? Yy @ rm m ’
and
2 2 .2 2 . 2
. t = v, cos” 8+ 2v.v cos® +V_sin @ sin"g (43)

Unfortunately, these complicated functions are apparently irreducible.

19



The argument of perigee is ;eiatgqéin_general to the true anomaly

by the formila

where

Since z = 0, the argument 6f perigee is equal to the negative of the
true anomaly.

This analysis has provided four new independent veriables
a, e, 1, w and two dependent or constant quantities v and O.
Normelly, éix independent variabiés are required to specify particle
motion. That there are only four is a consequence of utilizing only
four independent variables Vs 6, ¢ and Rm’ or, expressed physically,
assuming that the radial and velocity vectors with respect to the
luner system are coincident, (Although R has the mathematicel
property of being an independent variable, in most of this discussion

it is only necessary to consider one value).
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RESULTS

A.  INTRODUCTION

The Earth-Moon system provides an interésting application of the
Preceding theory because the velocity of escape vy fromthe Moon's
surface is larger than the Moon's geocentric orbit velocity Ve
Excépt for the Earth's Moon, the escape velocity from the natural
satellites of the solar system is less ﬁhan the orbital speed of the
satellite about the planet. (See Table I). In this case, the
residual velocity of an ejected particle is likely to be small compared
with the orbital velocity of the body from which escape occurred, so
that the particle's orbit about the planet will be similar to that of‘
the satellite. |

For a particle to leave the Moon, the ejection velocity must be
much larger than the orbital speed, Small changes in the ejection
veloéifﬁ;ipgii{réiggiiéiﬁiigiger changes in the residual velocity
vecﬁor. .Thefefore the residual speed of a particle ejected from the
Moon may be a sizeable fraction of, or equal to, or greater than the
Moon's geocentric orbital‘speed. Performing the vector addition
(Eq. 5) of a residual velocity.which is comparable in magnitude but
different in direction from the Moon's velocity yields a geocentric
velocity which will be quite unlike the Moon's velocity vector. If a
set of arbitrary residual velocity vectors is considered, it will be
found that the net geocentric velocities will vary widely among them-
selves. When transformed into geocentric orbits, a variety of types
will be obtained, often varying shafply'with small changes in the

speed v, or the direction (expressed with 6 and o) of the residual

velocity vector.
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The geocéntric orbits obtained will be illustrated in this section
in several ﬁays. The resulting geocentric orbits may be categorized or
described in several ways. The following pages discués the results in
three frameworks suitable for different applications. The energy of the

orbits which will exist for one or more orbits in the earth-moon system.

dis

The location of and characteristics of regions where the initial o

trajectories intersect the Earth are useful for many problems, including
manned lunar return missions, and the origin of tektites, The general
characteristics of the orbital elements obtained previously may be of

interest.

TABLE 1

Ratio of Escape Veiocity to Orbital Velocities of the Massive Natural
Satellites of the Solar System

Orbital Velocity Ratio

22

Planet Satellite Escape Velocity

Earth Moon 2.37 xm/sec 1.02 xm/sec 2.3

Jupiter Io 2.28 ’ 17.31 .13
Europa 1.99 . 13.73 .15
Ganymede 2.83 10.87 .26
Callisto 2.23  8.20 .27

Saturn Titan 2.99 5.57 .5k

Neptune - Triton 2.80 L.40 6k ‘



B. ENERGY

The energy of an orbit is perhaps the most important single

describer of an orbit., If the energy is small, the particle is bound

to the Earth-Moon system and can never escape If the energy is high
enough, the particle w1ll leave the Earth-Moon system during its first
orbit and will not fall back, although it may later pass through the
Earth-Moon system during a chance encounter.

Previously, two different "energies" were obtained (Eq., 9 and
Eq.'l2). The Jacobi integral of energy C is the true indication (with-
in the limits of the restricted three-body theory) of the meximum pos-
sible distance from the Earth-Moon system after a long period of time.
The Jacobi constant depends in this analysis, only upon Vs that is,

only upon the energy acquired during the ejection process. The value
GM

of the Jacobi (expressed in canonical units where =—— = 1) as a func-

R
m

tion of V. is given in Fig. 5. "It should be noted that the definition

of the Jacobi constant C is inverted with respect to the defiﬁition
of energy. That is, the larger the velocity becomes, the smaller C
becomes, whereas the two-body energy becomes larger with increasing
velocity.

Michael (Ref. 8) shows the curves of zero velocity around the Ly
and Lg for the Earth-Moon system (his definition of C contains a fac-
tor of two compared with C as used in this paper). The value of C at
the L, is approximately the value of C arrived at when V.= 0;
however, because of the mode of analysis‘involved in obtaining C in
this paper, it should not be concluded that a particle with zero
residual velocity will become trapped in the L, position. Indeed, this

analysis makes no distinetion in potential along the Moon's radius.
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It is’instead assumed that the Moon has "vanished", removing all of its
gravitational potential from the particle's energy. The utility of the
Jacobi consfant obtained herein is, recognizing that the particle

may reencounter the Moon after one or more orbits, in indicating how

the two body energy may be modified at some later time.

i§i iia\

The immediate, or two-body (Earth and particle) energy E depends .
upon two parameters, V. and 6. Because of this, values of E may be
plotted (Fig. 4) as a function of v, and 6. Since the probability that
a spherically symmetric distribution will provide a given value of 6
is proportional to cosf, the @-axis is marked in cosine units. The V.
axis 1s linear with respect to the ejection velocity vg. A better
choice would be a velocity axis proportional to the distribﬁtion of
ejection velocities as obtained from cratering theory or experiments,
but that is not within the scope of this paper. However, it may be
recognized that the lower ejection velocifies are more probable. Since
the petch conic technique has been found to give poorer results at low
velocities (Ref. 9), the plot begins at 2.4 km/sec.

The escape condition (Eq. 12, E = 0) is shown as Line 1 on Fig. L.
At the lower ejection velocities, most of the particles exiting from
the rear hemisphere {with respect to the Moon's motion) do not have
enough energy to "escape to infinity". As the ejection velocity in- .
creases, the area above Line 1 steedily shrinks until vg = 3.4 km/sec. -
it vanishes saltogether.

A less stringent conditlon than "escape to infinity" may also be
of interest. Then energy required to leave the Earth-Moon system
(Eq. 13) is obtained for values of vV and 6 along Line 2. Having suf-

ficient energy to leave the region where the Earth's gravitational field
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Predominates and go into essentially heliocentric orbit does not neces-
sarily imply the particle will. The angular momentum must be low as
well, However, Line 2 is useful in defining an upper limit to the
region where particles can immediately escape in any sense.

The percentages of orbits which.are elliﬁtic with respect to the

Earth may be obtained by integrating

TT/ 2 180

J deo J sin® d6 wvhere (46)

(o] e i

2 2
_ o~ Vr
87 = cos 1 z—— 1s obtained from Eq. 12 and
rm
normalizing by dividing by the area of a spherical quadrant. This
l+cosBy ,

obtains — x 100% which is plotted Fig. 6 as a function of v,.

A similar procedure yields the percentage which has less energy than
required to leave the Earth-Moon system during the first orbit.

The angular momentum is particularly useful in demonstrating the
conditions necessary for a particle to come directly to the Earth.
Furthermore it indicates whether an orbit is direct or retrograde.

It was shown (Eq. 39) that the condition -v,c0s8 = v represents
the demarkation line between retrograde and direet orbits. This con-
dition is met along Line 3 in Fig. 4. Above line 3 the orbits are
retrograde, below they are direct. Four classes of orbits may be
distinguished:

I) direct and hyperbolic, the predominate group

II) direct and temporarily trapped

III) retrograde and temporarily trapped

IV) retrograde and hyperbolic.

The percentages of retrograde orbits as a function of ejection velocity
is given in Fig. 6.
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It was established also that the equation -vréose = v is also
one of the two conditions establishing a trajectory which intersects
the center of the Earth, If it is assumed that Fig. 4 is specialized
to represent only the ¢ = 0° plane, then Liné 3 provides the initial
conditions which yield zero angular momentum with respect to the earth.
The region where particles may pass below the Earth's radius on the
first orbit is between the dotted lines L and 5 shown on Fig. 4, pro-
vided that ¢ = 0. The orbits between lines 3 and 5 will be retrograde;

between lines 3 and 4 direct.

Cod |



C.  MOON-TO-EARTH ERAJECTORIES

The problem of Moon-to-Earthmtrajectories has been studied
previouslyfby authors interested in manned space flight and in the
origin of tektites. In the former category, Penzo (Ref. 9) and
Dallas (Ref, 10), working mainly with the patch conic technique, iden-
tified many of the major characteristics of such trajectories. In the
latter category, Varsavsky (Ref. 11), in a paper several years ago,
found several Moon-to-Earth trajectories by numerical integration.
However, his results were too meager to provide much insight into the
problem, It is of interest to apply the formulation obtained earlier
in this paper to obtain general statements about such trajectories.

Trajectories arriving on Earth during the first orbit were shown
in the preceding section when @ = 0°, that is, the particle moves
entifely inlthe plane of the Moon's orbit around the Eérth. The con-
ditions necessary to obtain a Moon-to-Earth trajectbry'can be illus-
trated better by uﬁilizing a coordihéte plane containing © and ¢. The
axes of e.and ¢ are formed by prdjectiﬁg the rear velocity hemisphere
onto‘a.polar coordinate plane abouf a pole céihcidenf with the Moon's
antapex.‘ The radial spokés correépond to valués of w; the pole is at
6 = 180°, the outermost circle is 8= 90d. The ¢.= 90° line divides
the hemisphére into 1/4 Sphere faciﬁg the Earth;rand l/h sphere facing
away frombthe Earth. |

Bj using Eq. 27, the sets of‘v¥; 8, o which provide direct access
frbm the Modn to the Earth can gé'obtained.' By consi&ering a particular
valué of fhe ejection'veiocity vb; curves enélosing smail regions in
the e,‘ ép plaﬁevare eéﬁabnshed‘within which the @, ‘@ points will yield

Moon-to-Earth trajectories for that value of vo. These regions, which
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will be called "Velocity Strike Zones" in this paper, are plotted in

Fig. 7 for several specific values of v_.
r

Several major features may be pointed out:

1.

A minimum value of ejection velocity somewhat higher than

‘escape velocity from the Moon is required to establish

these trajectories. It is

.
o
V=V - v, : (47)
l-o
or, approximately,
‘vr‘= vm - o va ‘ ‘ (h8)

which requires vz .83k km/sec, or vo= 2.51 km/sec.

_When vo is low, but above the minimum, there is one velocity

strike zone surrounding 6 = 180°. As vo becomes larger,

the zone begins to contract in the middle and elongate along
the 8-axis, becoming somewhat dumbbell shaped., Next, the
zone fissions into twb separate zones, one on either side of,

but not including, & = 180°. The zones are oval shaped, and,

in this approximation, are identical to each other. The

trajectories stemming from the zones on the earthward side
of the hemisphere are‘headed toward‘perigee; those on the
outer side pass.through‘ﬁpogee before coming tq perigee.

As Vo becomes lerger, the ovels move further outward along
the ¢ = 09 axis, shrink slightly in size, and become more
cirpulgr. When vg 1s large enough to cause a hyperbolic
trajectoyy with respect po the Earth-Moon system, the zones

on the hemisphere away from the Earth venish, as the
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particles will never pass through the perigee phase of their
orbit. Aé Vo becomes very large (compared with vm) the
zone approaches 6 =:90°.and shrinks to the limit imposed by
geometrical size of the Earth, This limit can be obtained
by cdnsidering Eq. 27 when the conditions.vr == vy

(vd~ 11 km/sec) hold. The equation becomes cos® = 0 * a,
that is, the center of the zZone lies'along the Earth-Moon
line and the zone extends on either side an angular distance
o= RE/Rm. This is the geometrical limit which was used by
Urey (Ref.12) to obtain a negligibly small percent for the
amount of ejected materiasl arriving on earth.

The velocity strike zones lie close to the plane of thé
moon's orbit. This is in agreement with Penzo's observa-
tion that the asymptotic velocity vectors lie within 10°

of the Earth-Moon plane.

The boundary of the velocity strike zone ﬁas defined by
considering the maximum value of angular momentum necessary
to strike the Earth or the Earth's atmosphere. This condi-
~ tion provides trajectories which just graze the Earth's
atmosphere, i.e., have shallow entry angles. Within this
boundary lie concentric curves which yield,constant values

- of angular momentum, The values of angular momentum become
lower as the curve becomes closer to the center of the zone.
At the center, the angular momentum goes to zero as dis-
cussed earlier. Therefore, a desired &alue of entry angle
can be maintained by moving along a curve generated by

cosf
replacing o = ﬁ;'with ot = fgﬁ;——— where cosB is the
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angle of entry into the atmosphere with respect to the
horizon,

Most of the results presented above have been obtained previously
by authors using the usual form of the patch conic method., Dallas
gives a discussion of the properties of the loci of exit points from
the sphere of influence for a given reentry sngle of Barth, which are
analogous to the curves obtained from Eq. 27. Penzo has also pointed
out many of the above features. The advantage of the simplified version
of the patch conic method described in this paper is that it provides
elementary esnalytic equations to work with,

The choice of the V.. 8, ¢ coordinate system has some disadvantages
for this part of the problem. The disconbtinuity at ¢ = W/Z, while man-
ageable, causes clumsy results--for instance, the maximum value of ¢
for Earth strikes drops suddenly from T/2 to about 14°, However, the
use of the conventional latitude and longitude would result in an
algebraically more complicated formula.

The- percent of ejecta which arrives on Earth during the first
orbit can readily be obtained as a function of ejection velocity by
ecomparing the area of the Velocity Strike Zone with the area of the
unit sphere. Because of symmetry, it is only necessary to consider
the portion of the unit sphere bounded 0° £ 6 = 180, 0° < ¢ < 90°.

The area of this quarter-sphere is Al/4 = T. The area of the %
portion of the»véIocity strike zone for a given value V. contained

in this quarter sphere is given by

) 8
b= [ L
5 AVSZ = s8in® 46 deo
S 0 81

where 8y = cos™® (£0 + £) and 62 = cos™* (£O - £) are defined in Egs,
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(27) and (28) and ¢ _ is given in Eq. 29.
max
The total percent is given by
P = K———i X 100% - (50)
1/ .
4
The computational procedure varles, depending on the value of Vit
- 1. If £9 + ' < -1, or equivalently, v, <V - @V,
. (vo = 2.51 km/sec), then no particles will arrive on
Earth and P 0,
2, If £f9 + £ > -1 but £f° - £ <1, then
/2 - ¢
P = l%g J (° + £+ 1) ap S - (51)
0 :
whére € is a small number which is used to avoid the
discontinuity in Eq. (27) at ﬂ/2. Since the discontinuity
2
is of order gL, the numerical accuracy can be maintained
close enough to T/2 so that little contribution to P is
lost.
3. When f° - £ > 1, V.SV tav, (vo = 2.66 km/sec) then

algebraic cancellation can occur and

. 1

Although there is an abrupt change in the upper limit at .

V.=V, tav,, when Pax drops sharply from ﬂ/e to about

159, P is unaffected and varies smoothly thru the transi-

tion point.
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The results of the computations described above are shown in
Fig. 8. From.ihe minimmm velocity of 2.51 km/sec required for an
earth strike, the percentage rises sharply to the meximum value.
 An ejection velocity of ~ 2.6 km/sec will send the meximum smount of
material directly to the earth, about 3.3%. The curve decays some-
what slower, to provide a range in velocity of about .3 ¥m/sec which
will send at least 1% of the ejecta directly to the Earth. At about
Vo = 2.96 km/sec, there is a discontinuous drob in the percent because
the geocentric orbits are now hyperbolic and only those trajectories
passing through the Velocity Strike Zones facing the Earth will ever
go through perigee. After this the curve approaches very gradually
the asymptotic limit imposed by the geometric size of the Earth.

These results are in good sgreement with Chapmen's (Ref. 13),
which were obtainéd by ccmﬁﬁting over 4000 trajectories with numerical
integrafion methodé. Helpiesents in graphical form thé percentage of
ejJecta arriving directly onlEarth as a function of ejection velocity.
The percentages are given for materisl ejected at positions on the
moon where ten large craters are located. The curves have the same
shape and location of the pesk as in Fig. 8. Because individusal
craters have greater or lesser ﬁmounts of materisl which will pass thru
the Velocity StrikeZones, the peak-values of ihe percent curves vary
between 1 and 6%. It can be seen, however, that the average peak would

be about 3.5%, as 1s indicated in this paper.
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D. ORBITAL ELEMENTS

Resglts have been obtaiped forlfhe‘geocentric orbital elements
using the.analytic formulas developed in Eq. 32-45. Typical eiamples
of the variation of the orbital elements are presented gfaphic;ily
in this section. |

The variations ofvthe semimajor axis with 6 are shown in Fig. 9
for specifieq values of Ve Only the positive values of a are shown
in this figure. Eq. 33 shows that a(@) is a conie, and the curves
look hyperbolic. There is a flat bottom approaching 6 = 180°,vwith
a sharp rise going to the left at the lower values of 6. At the point
indicated by Line 1 on Fig. 4 the semimajor axis becomes infinite and
at still lower values of 6 it recedes from minus infinity with nega-
tive values. As the ejection velocity increases, the curves become
steeper,

The eccentricity as a function of § is shown in Fig. 10 for
specified values of the ejection velocity at ¢ =‘Oo and in Pig. 11
for specified values of ¢ at v = 2.6 km/sec. Values of e <1 are
elliptic orbits, e 2 1 are hypérboliq and, e = 1 parabolic. It can
be seen from the formula for perigee height, q = all-e), that the
condition that e be near one is a necessary but not a sufficient
condition for an Earth-strike. In the case 6f Vo = 2.6 km/sec the val-
ues of 0 near 180° where e ~ 1 yield Moon-to-Earth trajectories, while
the value of © near 90° where e ~ 1 do not.

The inclination is shown in Fig. 12 as a function of ¢ for
several values of vo and 6. The sharpest rises occur near the Velocity
StrikeZones and, as will be discussed in the next section, may in

fact be even sharper than indicated by the analytic formula for inclina-
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tion. It is interesting to note that the high inclinations relative
to the plané.of the Moon's orbit, both retrograde and direct, are
possible and are especially apt to occur in the case of Moon-to-Earth
trajectories;

The argument of perigee is shown as & function of 6 in Fig. 13 for
Vo = 2.6 km/sec. The curve varies between 0° and 180° because of the
assumed symmetry of the front side and back side of the Moon. However,
negative valués should be given to the argument of perigee if the
asymptote pasées thrbugh the rear side of the Moon's sphere of influence,

and positive when through‘the Earth side.




E. ACCURACY

The patch conic methqd has been suééessfully utilized in the study
ofbﬁrajectories for lunar missions, including manned space flight and
needs no justification here. Empirical corrections have been utilized
to improve the accuracy of the patch conic result (Ref. 9); but because
the aim of this paper was to provide the maximum possible'simplicity in
computation, and because specific answers such as landing point or time
of flight were not rquired, no attempt was made for high éccuracy.‘
Indeed, complicated refinements would destroy the utility of the
present work., If improved accuracy is needed, the usual form of the
patch conic, or if necessary numerical integration, should be re-
sorted to.

Still it is of value to provide some justification as to the
general correctness of the formulas obtained within this paper.

For this purpose, use was made of a numerical integration program
(ITEM Ref. 14) of good precision. ITEM is an interplanetary trajec-
tory flight program which is based on the Encke method of integrafing
trajectories influenced by several gravitational or other perturbing
forces. It has been applied té investigate or predict the motions of
several artificial satellites as well as lunar missions.

Several situations were compared betwegp the two programs.
Usually spoke orbits, as were assumed in developing the analytic
thebry, were computed until they had left the Moon's sphere of influence
(after about 10 hours flight time). The geocentric orbital elements
provided at this point were compared with the elements obtained from

the analytic theory.
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A series of runs was made aslong the plane of -the Moon's equator
to indicate the changes in the orbital elements with changes in 8.
- The values of v = 2.5 km/sec, 6 every 30° and ¢ = 0° were used. Fig. 1k
shows the comparative results for perigee. The ITEM values were taken
after 48 hours of flight. (A curve constructed after 18 hours of flight
time deviated a little more from the curve constructed by the analytic
method, but not enough to illustrate clearly on a graph of this scale.)
Two curves are obtained from ITEM to test the effect of the symmetry
of the orbits leaving from the backside with those leaving from the
Earth side of the Moon. The curves are nearly congruent and have the
same shabe sb the symmetry hypothesis is reasonable for this order of
accuracy. Theisemimajor axis is shown in Fig. 15 (negative values are
for hyperbolic cases). The agreement is satisfactory.

The velocity of 2.5 km/sec, being Just above the velocity of
escape from the Moon, represents the region where the patch conic method
is poorest. (Ref. 9). The same set of runs using an initial velocity
of 3.05 km/séc showed deviations between the three curves which were
too small to represent on graph paper of the same scale as Fig. 1k,
The region near Earth-strike ﬁas investigated with values of 9 oc-
curing every 2° between 118° and 140°. (Fig. 16). The two progrems
yield similar curves with a slight lateral displacement which may be
due to the differences in the Moon's distance. (Variations in the
locations of the Veloclty Strike Zones have been observed to occur with
changes in the Moon's position. (Ref. 9),

A genersl test was made by considering spoke orbits with vg = 2.8
km/sec at 8 =90° and ® = 0-90 every 152 (When 6 = 90, the longitude

is 180° and the latitude 1s equal to ¢). The comparative results are
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indicated in Table II. Here the semimajor axis is negative, indicating
a hyperbolic orbit. There is some divergence between the two programs
in the'éemimajor axis, but ITEM finds it to be a constant to within 1%.
The eccentricify, inclination and argument of perigee are correct to
about three places, but the true anomaly difergences increasingly as
the initial conditions are moved upwards from the plane of the equa-
tor from the negative value of the argument of perigee.

The relative elements of Moon-to-Earth trajectories as obtained
by ITEM and by the analytic formulaé were compared. Trajectories were
computed for ® = 140°, ¢ = 0° - 13° and vE = 2.7, 2.8 km/sec. This
regioﬁ is within the Velocity Strike Zones for v=2.7T and 2.8 km/sec.
iherefore the results of this set of runs gives some indication4of the
accurac& of Mooh-to-Eérth trajectories. Table III shows the values of
the six orbital elements, as obtained from numerical integrations (ITEM)
of the spoke orbit and by the_formulas discussed earlier in this paper.
The ofbital-éleéenté which very along a perturbed trajectory, were
the osculating elements ten hours after launch when the particle was
about 60,000 km from the Moon. A launch time on April 6, 1965 at
25:00 UT was aibitrériiy assumed in order to initiate the ITEM
cOmpﬁfation. The éémimajér axis differs between the two programs by
about 1000 km; however, the theoretical prediction that the semimajor
axis is independent of. changes in ¢ provided that a constant value of
6 is maintained is verified within 9 km, The eccentricity agrees to
four places. The inclination disagrees badly, apparently because the
denominetor in Eq. 39 goes to zero in the case of a Moon-to-Earth
trajectory. Then terms involving the z-coordinate, which were omitted
in the derivation of Eq., 39, may become important. The difficulties

are compounded by the necessity of taking the arctangent of a large
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number. The node is remarkably constant as predicted; the change of
node with change of velocity is because the ITEM program happens to
use the instantaneous Earth-Moon line as a reference., The true
anomaly is within 1© of the negative of the argument of perigee and
these angles are within 1° when comparing between the two programs.
Because the true anomaly varies continuously during the trajectory
and because a situation cannot be obtained in a numerical integra-
tion program which is comparable to the assumption that "the moon has
vanished instantaneously" absolute agreement with the prediction
that w =-v cannot be expected.

For completeness, a study was made of a set of orbits which were
not spoke orbits but more realistic orbits, physically speaking.
The spoke conditions 8 = 1550, @ = 45° and v = 2.7 km/sec were chosen
and, assuming an inclination of 45° to the reference plane, starting
conditions on the Moon's surfacé were calculated for several assumed
angles of ejection to the Moon's horizon. The trajectories were
numerically integrated past the edge of the Moon's sphere of influence.
The lunar coordinates of the particle did not correspond exactly to
the assumed spoke conditions, These deviations may be ascribed to
the influence of Earth perturbations during selenocentric phase of the
trajectory and to the fact that the asymptotic conditions with respect
to the Moon have not been reached exactly, or to loss of place accuracy
in the hand computation obtaining the surface conditions, or to the
difference between the Moon's orbital plane and its equatorial plane.

Table IV presents the results of the computations. ©Since the

latitude at exit from the sphere of influence, which would be 30°
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TABLE IV
. COMPARISON OF VARIOUS NON-SPOKE ORBITS AT ONE POINT IN 6, «© SPACE

¥ Ejection Velocity = 2.7 km/sec
. Spoke Conditions: & = 135° ¢ = 4s©
-ITEM Computations: -
Selenocentric Conditions at Lunar Surface: Selenocentric Conditions 10 hours {53000km) a
Ejection .
Elevation Angle Latitude Longitude Velocity Elevation fAngle Latitude
0.0 -k4230 -1712700 1.35 86209 27953
30.0 -24 54 -120.880 1.35 86.55 299%
k5.0 -11.12 -101.880 1.35 87.25 28.95
60.0 + 2,92 - 87.080 1.35 88.02 28.8¢
Analytic Method: ' T
90.0 1.28 90.00
Ejection Velocity = 2.8 km/sec - at 9 hours
0.0 -k .00 -164.87 1.54 8.5 28.5
30.0 -22.23 -120.05 1.54 87.0 29.1
45.0 -10.12 -100.k6 j 1.54 87.5 28.7
60.0 + 3.75 - 8.2% _ 1.5k 88.2 28.7

Analytic Method:
90.0 1.48

3
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a
382092
575924
390152
384515

322373
520954
4855695

525564
519872

4oo8h2

e

LTh291h
.711023

- 735950
LTh1T7hL

.T1l5245
.Thk 389
.718152

-757075
- 759296

. 708167

i
8k.896
85. 541
8126
84.755
80.30

95.105
96.857
95.071
95.535

92.37

Geocentric Orbjtal Elements

5.
.18q06o
6.

-5

A
o]

5
-6
-6

0
127256

18?29&

. 154400

|
i
!

}

.03qO72
.o7§91h
067245
029534

w
-138.642
-136.917
-136.942
-138.192

-145.63
-122.473
-123.049

-123.713
-124.576

-131L.42

v
142,04k

140.580
140.585
141,842

145.63
126.398
127.115

127.707
128,596

131.42
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for 8 = 1359, o =.h5°, was a8 much as 2.1/2° off, some error is
introduced in comparing the exit eiements with the analytic1elements.
Under fhese condifions, the deviétions bétween theAmethods ére in the
second place, This.is sufficient accuracy for some purposes, and»with
care, more aééuracy could be obfained;

There are several ‘sources of dev1at10ns ‘between ITEM and the
analytic method. The geocentric orbital elements provided by ITEM
are not at all constant but vary contlnuously along the trajectory,
Firsf,'fhe energy of the particle at fhe_edge ofvthe Moon's sphere of
influence étill céntainé‘a.perceptible component éf fhe Moon'é poten-
tial energy. The accuracy ﬁight be increased by métching'elements at
8 later time in ITEM, or by removing only the‘difference in poténtial
energy with respect to the Moon. ©Second, the eccentricity of the Moon's
orbit induces changes in Rm and Vi Third, the perturbations by the
Earth during‘the Moon phase of the trajectory are neglected. Fourth,
the particle is given an x-coordinate only so that‘terms depending on
the y or z coordinate are neglectéd. Fifth, the particle is assumed
to be moving along a hyperbolic asymptote with respect to the Moon, an
assumption that improves as the ejection velocity increases.

In summary, the analytic method provides a good approximafion to
the geocentric orbital elements over a wide range of initial condltlons
In order to evaluate prec1$ely how much accuracy is provided by the
method, precise specifications must be made as to what is being evaluated
and when. The accuracies indicated by'the previous tables and graphs
are sufficient for the purposes of this paper. The accuracy of-the

method can probably be improved for particular purposes.
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CONCLUSION

A good description of all possible trajectories érising from
launch or ejection from the Moon's surface has been obtained in the
form of a few elementary algebraic formulas. It has been shown that
velocity asymptotes in the instantaneous direction of the Moon's
motion will yield orbits that are hyperbolic with respect to the -
Earth-Moon system even if the ejection velocity is barely above that “
necessary for escape from the moon. It was indicated that, as the
ejection velocity increases, there is an enlarging area centered about
the Moon's apex where the velocity asymptotes will provide hyperbolic
geocentric orbits. When the ejection velocity is large enough, all
geocentric orbits wili be hyperbolic.

The demarkation between retrograde and direct geocentric orbits
was given. The condition establishing trajectories with zero angular
momentum was obtained.

The initisl conditions for Mbon-to-Earth trajectories has been
established analytically.v The geometric conditlions for a given
initial velocity have been computed and shown graphically. The formulas
obtained are in good agreement with numerical results described by
previous authors. The minimum velocity (vgo = 2.55 km/sec)»for a Moon-
to-Earth trajectory requires that the veldcity ésymptotes lie near the
Moon's antapex. The Velocity Strike Zone encompassiﬁg the largest ares
is about vo = 2.65 km/sec. While these trajectories are too long in .
duration to be practical for manned space flight, they might be
desirable for unmanned spacecraft returning from the Moon,

The significance of "gravitational focusing" on Moon-to-Earth

trajectories has been discussed in the literature. The foregoing




analysis shows that the relative velocity of the Moon about the Earth
is of more importance,in determining the characteristics of Moon-tof
Earth trajectories. Although the amount of the velocity added by
falling through the Earth's gravitatignal field is large (~ 11 km/sec),
its effect on Eq, 27 is small, since it is multiplied by o and the
product is: small {~ .06 km/sec). .

The initial geocentric orbital elements were found to be in rea-
sonable agreement with results of numerical integrations. Improvement
could probably be made by allowing for the eccentricity of the Moon's
orbit, or with other corrections indicated herein,

The general conclusions made on the basis of analysis were sub-
stantiated to a remarkable degree by the numerical integration runs.

1) The semimajor axis is independent of ¢. This was true to
four places in Table II.

2) The right ascension of the ascending node is zero (or con-
stant, depending on the reference point). This prediction is confirmed
to almost as many places as are carried in the numerical integration
program. {The change of () with change in velocity is a spurious ef-
fect due to the particular coordinate system utilized in ITEM.)

3) The prediction that the initial true anomaly is equal to the
negative of the argument of perigee is weli verified. This is a
geometrical effect occuring because the particle starts in the
reference plane,  Since the particle has traveled for 1/2 a day be-
fore the Earth-referenced true snomaly is computed, there is a dif-
ference of sbout a degree in v snd -w.

This form of analysis is useful because of its functional sim-

plicity and probably could be extended for applications to more closely

hs.



defined problems., The method can probably be used to generate initial
conditions for the patch-conic iterations to find Moon-to-Earth
trajectories and to provide analytical partisl derivatives to home in
on the final tréjectory. With a modification to allow for the effect
of arbitrery perilune, the method'might be applied to the problem of

circumlunar trajectories.
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FIGURE 14

PERIGEE DISTANCE VS. THETA: CCMPARATIVE RESULTS
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FIGURE 15 -

SEMIMAJOR AXIS VS. THETA: COMPARATIVE RESULTS
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